Pressure control valve

Description

OLR is a rectangular pressure control valve for installation directly onto a wall. OLR consists of two sound-attenuating baffles, which are mounted either side of the wall and connected by means of the accompanying perforated wall sleeve, which ensures excellent noise reduction.

- · High capacity
- Sound-attenuating baffles
- Can be installed in wall thicknesses from 90-170 mm

Maintenance

Front plate can be removed to enable cleaning of internal parts. The visible parts of the diffuser can be wiped with a damp cloth.

Dimensions

	Α	В	L	н
Size	mm	mm	mm	mm
400	400	130	300	50
600	600	130	500	50
800	800	130	700	50
1000	1000	130	900	50

Hole dimension = L + 5 mm x H + 5 mm

Order code

Product	OLR	aaa	Α
Туре			
Size			
Version			

Materials and finish

Installation bracket:	(
Front plate:	(
Standard finish:	F
Standard colour:	F

Galvanised steel Galvanised steel Powder-coated RAL 9010, Gloss 30

The diffuser is available in other colours. Please contact Lindab's sales department for further information.

649

Pressure control valve

OLR

Technical data

Sample calculation

When dimensioning an overflow diffuser, calculate the decrease in the wall's noise-reducing properties. For these calculations, the area of the wall and sound reduction figure R must be known. This is adjusted in relation to the diffuser's $D_{n,e}$ value. $D_{n,e}$ is the diffuser's R value given at a transmission area of 10 m², as specified in ISO 140-10. The $D_{n,e}$ value can be converted into the R value for other transmission areas using the table below.

area [m ²]	10	2	1
correction [dB]	0	-7	-10

The diagram below indicates the decrease in the wall's reduction figure, based on the diffuser, in a given octave band:

As a rough estimate the calculation can be performed directly using the wall's $\rm R_w$ value.

Example:		
R _w (wall)	50 dB	
D _{n,e,w} (diffuser)	44 dB	R _w - D _{n,e,w} = 6 dB
Area of wall	20 m ²	, ,
Number of diffus	sers1	20 m²/1 = 20 m²

Indicated reduction of R_w (wall): 5 R_w value for wall with diffuser ~50-5 = <u>45 dB</u>

The calculation can also be performed using the following formula:

$$R_{res} = 10 \bullet Log \left(\frac{S}{(10m^2 \bullet 10^{-0,1 \bullet D_{n,e}}) + (S \bullet 10^{-0,1 \bullet R_{wall}})} \right)$$

where:

- R_{res} is the resulting reduction figure for wall and diffuser.
- S is wall area.

- $D_{n,e}$ is the diffuser's $D_{n,e}$ value.
- Rwall is the wall's R value without diffuser.

Technical data

Capacity

Volume flow q_v [l/s] and [m³/h], total pressure drop Δp_t [Pa] and sound effect level L_{WA} [dB(A)] are specified for a diffuser on either side of the wall.

Element-normalised reduction figure D_{n.e}

Table 1: Cavity wall with 120 mm insulation

	Centre frequency Hz					
Size	125	250	500	1K	2K	Dn,e,w
400	*31	37	41	46	55	46
600	*29	35	38	43	52	43
800	*28	34	37	42	51	42
1000	*26	33	36	41	50	41

Table 2: Cavity wall with 35-70 mm insulation

	Centre frequency Hz					
Size	125	250	500	1K	2K	Dn,e,w
400	*31	37	39	42	52	44
600	*29	35	37	40	49	42
800	*28	34	35	39	48	40
1000	*26	33	34	38	47	39

Table 3: Positioning over a frame in a cavity wall with 70 mm insulation

	Centre frequency Hz					
Size	125	250	500	1K	2K	Dn,e,w
400	*31	37	36	41	52	42
600	*29	35	33	39	49	39
800	*28	34	32	38	48	38
1000	*26	33	31	37	47	37

Table 4: Solid wall without insulation

400 *31 37 32 37	2K Dn,e,w
	45 38
600 *29 35 30 35	43 36
800 *28 34 28 33	42 34
1000 *26 33 27 32	41 33

* minimum values

