Pressure control valve

Description

OLR is a rectangular pressure control valve for installation directly onto a wall. OLR consists of two sound-attenuating baffles, which are mounted either side of the wall and connected by means of the accompanying perforated wall sleeve, which ensures excellent noise reduction.

- High capacity
- Sound-attenuating baffles
- Can be installed in wall thicknesses from 90-170 mm

Maintenance

Front plate can be removed to enable cleaning of internal parts. The visible parts of the diffuser can be wiped with a damp cloth.

Dimensions

Size	\mathbf{A} $\mathbf{m m}$	\mathbf{B} $\mathbf{m m}$	\mathbf{L} $\mathbf{m m}$	\mathbf{H} $\mathbf{m m}$
400	400	130	300	50
600	600	130	500	50
800	800	130	700	50
1000	1000	130	900	50

Hole dimension $=\mathrm{L}+5 \mathrm{~mm} \times \mathrm{H}+5 \mathrm{~mm}$

Materials and finish

Installation bracket: Galvanised stee
Front plate: Galvanised steel
Standard finish: Powder-coated
Standard colour: RAL 9010, Gloss 30
The diffuser is available in other colours. Please contact Lindab's sales department for further information.

Order code

| Product OLR |
| :--- | :--- |
| Type |
| Size |
| Version |

Pressure control valve

Technical data

Sample calculation

When dimensioning an overflow diffuser, calculate the decrease in the wall's noise-reducing properties. For these calculations, the area of the wall and sound reduction figure R must be known. This is adjusted in relation to the diffuser's $D_{n, e}$ value. $D_{n, e}$ is the diffuser's R value given at a transmission area of $10 \mathrm{~m}^{2}$, as specified in ISO 140-10. The $D_{n, e}$ value can be converted into the R value for other transmission areas using the table below.

area $\left[\mathbf{m}^{2}\right.$]	10	2	1
correction [dB]	0	-7	-10

The diagram below indicates the decrease in the wall's reduction figure, based on the diffuser, in a given octave band:

Area of wall $\left[\mathrm{m}^{2}\right]$ / Number of valves [-]

As a rough estimate the calculation can be performed directly using the wall's R_{w} value.

Example:
$\begin{array}{ll}\mathrm{R}_{\mathrm{w}} \text { (wall) } & 50 \mathrm{~dB} \\ \mathrm{D}_{\mathrm{n}, \mathrm{e}, \mathrm{w}} \text { (diffuser) } & 44 \mathrm{~dB} \\ \text { Area of wall } & 20 \mathrm{~m}^{2}\end{array}$
Area of wall 20 m

$$
\begin{aligned}
& R_{w}-D_{n, e, w}=6 d B \\
& 20 \mathrm{~m}^{2} / 1=20 \mathrm{~m}^{2}
\end{aligned}
$$

Indicated reduction of R_{w} (wall): 5
R_{w} value for wall with diffuser $\sim 50-5=45 \mathrm{~dB}$
The calculation can also be performed using the following formula:

$$
\mathrm{R}_{\mathrm{res}}=10 \cdot \log \left(\frac{\mathrm{~S}}{\left(10 \mathrm{~m}^{2} \cdot 10^{\left.-0,1 \cdot \mathrm{D}_{\mathrm{n}, \mathrm{e}}\right)+\left(\mathrm{S} \cdot 10^{-0,1} \cdot \mathrm{R}_{\text {wall }}\right)}\right.}\right)
$$

where:

- $\mathrm{R}_{\mathrm{res}}$ is the resulting reduction figure for wall and diffuser.
- S is wall area.
- $D_{n, e}$ is the diffuser's $D_{n, e}$ value.
- $R_{\text {wall }}$ is the wall's R value without diffuser.

Technical data

Capacity

Volume flow $\mathrm{q}_{\mathrm{v}}[/ / \mathrm{s}]$ and $\left[\mathrm{m}^{3} / \mathrm{h}\right]$, total pressure drop $\Delta \mathrm{p}_{\mathrm{t}}[\mathrm{Pa}]$ and sound effect level $L_{w A}[\mathrm{~dB}(\mathrm{~A})]$ are specified for a diffuser on either side of the wall.

Element-normalised reduction figure $D_{n, e}$

Table 1: Cavity wall with 120 mm insulation

	Centre frequency Hz						
Size	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$	$\mathbf{1 K}$	$\mathbf{2 K}$	Dn,e,w	
400	$* 31$	37	41	46	55	46	
600	${ }^{*} 29$	35	38	43	52	43	
800	$* 28$	34	37	42	51	42	
1000	$* 26$	33	36	41	50	41	

Table 2: Cavity wall with $35-70 \mathrm{~mm}$ insulation

	Centre frequency Hz						
Size	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$	$\mathbf{1 K}$	$\mathbf{2 K}$	Dn,e,w	
400	$* 31$	37	39	42	52	44	
600	${ }^{*} 29$	35	37	40	49	42	
800	$* 28$	34	35	39	48	40	
1000	$* 26$	33	34	38	47	39	

Table 3: Positioning over a frame in a cavity wall with 70 mm insulation

Centre frequency Hz						
Size	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$	$\mathbf{1 K}$	$\mathbf{2 K}$	Dn,e,w
400	$* 31$	37	36	41	52	42
600	$* 29$	35	33	39	49	39
800	${ }^{*} 28$	34	32	38	48	38
1000	$* 26$	33	31	37	47	37

Table 4: Solid wall without insulation

	Centre frequency Hz						
Size	$\mathbf{1 2 5}$	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$	$\mathbf{1 K}$	$\mathbf{2 K}$	Dn,e,w	
400	$* 31$	37	32	37	45	38	
600	$* 29$	35	30	35	43	36	
800	$* 28$	34	28	33	42	34	
1000	$* 26$	33	27	32	41	33	

* minimum values

